Effects of exposure to low-level lead on spatial learning and memory and the expression of mGluR1, NMDA receptor in different developmental stages of rats

Author:

Wang Xin-Mei1,Liu Wen-Jun1,Zhang Rong2,Zhou Yi-Kai1

Affiliation:

1. MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China

2. Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, PR China

Abstract

The effect of different periods of lead exposure on deficits of learning and memory is still unclear. In this study, we conduct in vivo experiment to investigate the critical stages when lead induced neurotoxicity in rats and its underlying mechanisms in some critical stages. Rats were exposed to 0.2% mg/ml lead acetate solution via drinking water during gestation, lactation and ablactation periods. Behavior deficits were found in gestation and lactation. N-Methyl-d-aspartate (NMDA) receptor subunit 2A (NR2A) increased during gestation both in hippocampus and cerebral cortex compared to the control group; in all treatment groups NR2B decreased in hippocampus and in cerebral cortex during the lactation period. Meanwhile, in hippocampus metabotropic glutamate receptor 1 (mGluR1) decreased during gestation and lactation periods but increased during the ablactation period. These observations suggest that exposure to lead in gestation and lactation periods could cause neurobehavioral deficits which extend to adulthood, and lactation was a more sensitive period for lead exposure. Furthermore, the abnormal expression of NMDA receptor 2 (NMDAR 2) subunits and mGluR1 are likely to be associated with the impairment.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3