Malathion and dithane induce DNA damage in Vicia faba

Author:

Arya Shashi Kiran1,Ghosh Ilika1,Banerjee Ritesh1,Mukherjee Anita1

Affiliation:

1. Cell Biology and Genetic Toxicology Laboratory, Department of Botany, University of Calcutta, Kolkata, India

Abstract

The increasing use of pesticides such as malathion and dithane in agriculture causes environmental mutagenicity. However, their genotoxicity in edible crops is seldom assessed. In this study, the genotoxic potential of malathion and dithane was evaluated in the roots of Vicia faba L. All three concentrations (0.05, 0.1, and 0.2%) of malathion and dithane tested resulted in a significant decrease in root length and inhibited seed germination. Cytological observations showed that the mitotic frequency in the root meristematic cells decreased parallel to the increase in concentrations, and the increase in chromosome aberrations and micronuclei frequency was concentration dependent. Alkaline comet assay revealed significant onset of DNA damage at all tested concentrations. For the randomly amplified polymorphic (RAPD)-polymerase chain reaction (PCR) analyses, 10 random RAPD primers were found to produce 116 unique polymorphic RAPD band fragments of 223–3139 bp. Each primer generated 3–15 RAPD bands on an average. The percentage of polymorphic DNA fragments was higher in malathion-exposed plants than dithane ones. The changes in RAPD profiles included disappearance and/or appearance of DNA bands in malathion and dithane treatment. Hence, DNA damage observed by the cytogenetic endpoints and comet assay corroborated with RAPD-PCR analysis. A total of 15 new protein bands of molecular weight ranging 11.894–226.669 kDa were observed in roots of Vicia plants that were exposed to the pesticides. The number of new protein bands was higher in malathion-treated DNA samples than in dithane-treated ones. Based on the results, we conclude that the pesticides can alter genomic template stability and change protein profiles. Malathion was more genotoxic than dithane. Therefore, RAPD assays can be useful in determining genotoxicity of pesticides in V. faba and other crops along with other quantitative parameters.

Funder

University Grants Commission

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3