Exposure to MMVF in residential and commercial buildings: A literature review and quantitative synthesis

Author:

Allen Laura H1,Suder Egnot Natalie1ORCID,Allen Hannah1,Chan Kathy2,Marsh Gary1

Affiliation:

1. Stantec ChemRisk, Pittsburgh, PA, USA

2. Stantec ChemRisk, Arlington, VA, USA

Abstract

Man-made vitreous fibers (MMVF) are a class of inorganic fibrous materials that include glass and mineral wools, continuous glass filaments, and refractory ceramic fibers valued for their insulative properties in high temperature applications. Potential health effects from occupational exposure to MMVF have been investigated since the 1970s, with focus on incidence of respiratory tract cancer among MMVF-exposed production workers. The general population may experience exposure to MMVF in residential and/or commercial buildings due to deterioration, construction, or other disruption of materials containing these fibers. Numerous studies have characterized potential exposures that may occur during material disruption or installation; however, fewer have aimed to measure background MMVF concentrations in residential and commercial spaces (i.e., non-production settings) to which the general population may be exposed. In this study, we reviewed and synthesized peer-reviewed studies that evaluated respirable MMVF exposure levels in non-production, indoor environments. Among studies that analyzed airborne respirable MMVF concentrations, 110-fold and 1.5-fold differences in estimated concentrations were observed for those studies utilizing phase contrast optical microscopy (PCOM) versus transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. A positive correlation was observed between respirable air concentrations of MMVF and total surface concentrations of MMVF in seldom-cleaned areas. Ultimately, available evidence suggests that both ambient air and surface concentrations of MMVF in indoor environments are consistently lower than exposure limits developed to prevent negative health outcomes among sensitive populations.

Funder

North American Insulation Manufacturers Association

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3