Affiliation:
1. Office of Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
2. Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Laurel, MD, USA
Abstract
We have previously measured the distribution and pharmacokinetics of biosynthetically radiolabeled endotoxin of Salmonella typhimurium following intraperitoneal (IP) dosing (200 μg/kg) in Sprague-Dawley rats. In our experiments, the fatty acid residues were labeled with 3H and the glucosamine residues were labeled with 14C. To predict the dynamics of endotoxin exposure, we developed a physiological-based pharmacokinetic model using our measured distribution results. The model was validated with published low-dose (30 μg/kg) IP exposure results in rats. Endotoxin pharmacokinetics depended on dose and route. At high IP doses, absorption was followed by biphasic decay over 48 h in plasma. There were tissue accumulations of the fatty acid and glucosamine residues in various target organs, including the brain. We also found that the glucosamine and fatty acid components separated in vivo about 3 h after IP injection. At the lower IP dose, a smaller fraction of the dose was distributed to the tissues, with most of the dose remaining in the blood. Each component had its own dynamic behavior and target tissue distribution in the rat. The fatty acid components tended to remain in the brain stem, caudate nucleus, cerebellum, frontal cortex, hippocampus, and hypothalamus. Other organs (spleen, kidney, meninges, and choroid plexus) had similar biphasic distribution. The liver had the unique accumulation of both glucosamine and fatty acid residues.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献