Affiliation:
1. Lacebark Inc., Publications and Research, Stillwater, Oklahoma
Abstract
Herbicides that inhibit acetolactate synthase (ALS), the enzyme common to the biosynthesis of the branch-chain amino acids (valine, leucine, and isoleucine), affect many species of higher plants as well as bacteria, fungi, yeasts, and algae. The novel mechanism of action attributed to ALS inhibitors, their effect on the reproduction of some plant species, their potency at extremely low concentrations, and the rapid evolution of resistance to these herbicides in some plants and microorganisms are characteristics that set ALS inhibitors apart from their predecessors. This class of chemicals affects seedling growth. Older plants exhibit varied signs of malformation, stunting, and reduced seed production. These herbicides are so potent that they can affect plants at levels that are undetectable by any standard chemical protocol. Weeds quickly become resistant to ALS inhibitors, presumably because these herbicides have a single mode of action and because many have long residual activity. Concern now is directed towards developing the technology to detect very low concentrations of ALS inhibitors in the environment and their indirect effects on plant and animal health.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献