Neural autoantibodies in patients with neurological symptoms and histories of chemical/mold exposures

Author:

Abou-Donia Mohamed Bahie1,Lieberman Allan2,Curtis Luke2

Affiliation:

1. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA

2. Center for Occupational and Environmental Medicine, North Charleston, SC, USA

Abstract

A number of studies have linked exposures to industrial and household chemicals and biological toxins to increased risk of autoimmunity in general and elevated levels of autoantibodies to neural antigens specifically. Elevated neural autoantibodies are biomarkers for many diseases such as multiple sclerosis and Parkinson’s disease. Our study reports levels of six types of neural autoantibodies in a group of 24 toxicant-exposed patients. The patients were exposed to a variety of toxicants including contaminated drinking water (four patients), building water/mold damage (eight patients), pesticides (four patients), and other assorted toxic chemicals (eight patients). Levels of all six neural autoantibodies were significantly elevated in most patients and in the patient group at large, with mean antibody levels for the 24 chemically exposed patients (relative to a healthy control population), in descending order: 475% for tau proteins, 391% for microtubule associated proteins-2, 334% for neurofilament proteins (NFP), 302% for myelin basic protein, 299% for glial fibrillary acidic proteins, and 225% for tubulin. Tau protein autoantibodies were significantly elevated in the patient groups with peripheral neuropathy, muscle and joint pain, asthma, and chemical sensitivity. Autoantibodies to tubulin were significantly higher in the chemical sensitivity and asthma patients, autoantibodies to NFP were significantly higher in the patients with sleep apnea, whereas S-100B autoantibodies were significantly increased in patients with muscle/joint pain, asthma, and apnea/insomnia. In patients exposed to environmental toxicants, measurements of autoantibodies may be useful for prevention, diagnosis, and treatment. This study adds to the scientific literature the ability of a broad spectrum of environmental triggers adversely affecting the nervous system through the process of autoimmunity, which may explain the increasing incidence of neurodegenerative diseases.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3