Affiliation:
1. Nutritional Biochemistry and Toxicology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, West Tripura, India
2. Department of Botany, Tripura University, Suryamaninagar, West Tripura, India
Abstract
Lead (Pb) is one of several environmental pollutants that adversely affect human health by producing toxicity at the tissue level. The aim of the study was to understand the effects of Pb on the metabolic profiles of liver and gastrocnemius muscle of mice in relation to carbohydrate and fat metabolisms. Swiss albino mice were chosen and divided into two groups, control and Pb-treated. The Pb-treated animals were exposed to Pb at a dose of 5 mg/kg body weight for 30 days orally, which resulted in hypoglycemia, glycosuria, and increased glycogenolysis in the liver and gastrocnemius muscle of treated mice. Pyruvic acid, the end product of glycolysis decreased in muscular tissue and increased in the liver. Additionally, the activity of G-6Pase was depressed in the liver, whereas lactate dehydrogenase activity was increased in skeletal muscle only. An adaptive mechanism was initiated by stimulating glycogenolytic and retarding glycolytic activity in the liver and also by alteration of liver and muscle pyruvate dehydrogenase activity along with increased activity of malate dehydrogenase in skeletal muscle. There was enhancement of succinate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase activities in the studied tissues. Interestingly, cholesterol, high-density lipoprotein, and low-density lipoprotein levels were elevated, whereas those of triglycerides were decreased in Pb-treated mice serum. The activities of fatty acid synthase and glyceraldehyde 3 phosphate dehydrogenase were depressed in Pb-treated mice livers. Pb also significantly altered the morphological features of the liver, skeletal muscle, and pancreas. These data suggested that subacute Pb exposure was responsible for metabolic modulation in an adaptive fashion in the liver and skeletal muscle of mice.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献