An Overview of Structure-Activity Relationships as an Alternative To Testing in Animals for Carcinogenicity, Mutagenicity, Dermal and Eye Irritation, and Acute Oral Toxicity

Author:

Enslein Kurt1

Affiliation:

1. Health Designs, Inc. Rochester, New York

Abstract

The use of structure-activity relationships (SAR) has proven practical for the development of equations which can be used to estimate the above-listed endpoints for a large variety of chemicals. The SAR models predict these endpoints correctly in 85 to 97% of the cases and often surpass in their predictive ability the results obtainable from the equivalent biological assays. These SAR models are being used at several levels: drug, or more generally, chemical discovery; prioritization for testing; regulatory affairs; investigation of detoxification mechanisms; and risk estimation. In the new compound (discovery) use, potential toxic effects of a set of related compounds are investigated before synthesis to select those chemicals with the lesser probabilities of producing toxic effects for further investigation, at considerable savings in research expenditure since fewer compounds need to be synthesized, and the avoidance of blind alleys. Prioritization for testing is used in numerous instances, such as selecting those chemicals in an environment which are most likely to have toxic effects for priority attention. SAR models are used by regulatory agencies to determine the possible toxic effects of chemicals for which data insufficient to render decisions have been submitted, and to gain insight into possible toxicity problems. SAR models are also used to investigate possible metabolites, and toxicity mechanisms due to the ability of making computer-based structural modifications and observing the effects on the modelled toxic endpoints. Risk analysis is a natural outgrowth of several of the above applications, and is particularly useful for SAR models of carcinogenicity. SAR models as alternatives to animal bioassays should be used in the context of other information for the chemicals of concern. Just as bioassays and in vitro methods have their limitations, so do SAR models. These include the sometimes limited data base on which to base an SAR model, the temptation to extrapolate beyond the confines of the model, and the noise inherent in the bioassays on which the models are based. Within these constraints SAR models have a considerable potential in reducing the number of animals used in toxicity testing.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3