Preparation and application of α-Fe2O3@MIL-101(Cr)@TiO2 based on metal–organic framework for photocatalytic degradation of paraquat

Author:

Khodkar Asghar1,Khezri Seyed Mostafa2ORCID,Pendashteh Alireza34,Khoramnejadian Shahrzad1,Mamani Leila2

Affiliation:

1. Department of the Environment, Damavand Branch, Islamic Azad University, Damavand, Iran

2. Faculty of Environment and Energy, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran

3. The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran

4. Department of Chemical Engineering, University of Guilan, Rasht, Iran

Abstract

In this study, a new magnetic α-Fe2O3@MIL-101(Cr)@TiO2 photocatalyst was successfully synthesized. The material synthesized had been fully characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and Brunauer–Emmett–Teller isotherm methods. The X-ray diffraction analysis corroborates that nanoparticles are polycrystalline with rhombohedral and tetragonal crystal structures for Fe2O3 and TiO2, respectively. In addition, the photocatalytic degradation of the herbicide paraquat in the presence of α-Fe2O3@MIL-101(Cr)@TiO2 under ultraviolet (UV) irradiation was studied. The effect of experimental parameters such as the initial concentration of catalyst, the pH, and the initial paraquat was investigated. The optimal conditions were achieved for concentration of catalyst 0.2 g L−1, pH 7, and concentration of paraquat 20 mg L−1. The photocatalytic degradation efficiency was 88.39% after 15 min with α-Fe2O3@MIL-101(Cr)@TiO2 under UV irradiation. The pseudo-second-order kinetic model for photocatalytic degradation of paraquat was obtained. The catalysts could be recovered and reused without any loss of efficiency for five times in the consequent reactions. To the best of our knowledge, this is the first report on the photocatalytic degradation of paraquat using new α-Fe2O3@MIL-101(Cr)@TiO2 photocatalyst under UV irradiation condition.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3