Identification of promoter PcadR, in silico characterization of cadmium resistant gene cadR and molecular cloning of promoter PcadR from Pseudomonas aeruginosa BC15

Author:

Prabhakaran Rajkumar1,Rajkumar Sebastin Nirmal2,Ramprasath Tharmarajan3,Selvam Govindan Sadasivam1ORCID

Affiliation:

1. Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India

2. Department of Zoology, Thiyagarajar College, Madurai, Tamil Nadu, India

3. Center for Molecular and Translational Medicine, Petit Science Center, Georgia State University, Atlanta, GA, USA

Abstract

Cadmium (Cd) remediation in Pseudomonas aeruginosa is achieved through the function of two vital genes, cadA and cadR, that code for P-type ATPase (CadA) and transcription regulatory protein (CadR), respectively. Although numerous studies are available on these metal-sensing and regulatory proteins, the promoter of these genes, metal sensing and binding ability, are poorly understood. The present work is aimed at the characterization of the CadR protein, identification of the P cadR promoter and protein–promoter–metal binding affinity using bioinformatics and to validate the results by cloning the P cadR promoter in Escherichia coli DH5α. The promoter regions and its curvature were identified and analysed using PePPER software (University of Groningen, The Netherland) and the Bendit program (Version: v.1.0), respectively. Using Phyre, the three-dimensional structure of CadR was modelled, and the structure was validated by Ramachandran plots. The DNA-binding domain was present in the N-terminal region of CadR. A dimeric interface was observed in helix-turn-helix and metal ion-binding sites at the C-terminal. Docking studies showed higher affinity of Cd to both CadR (Atomic contact energy = −15.04 kcal/Mol) and P cadR (Atomic contact energy = −40.18 kcal/Mol) when compared to other metal ions. CadR with P cadR showed the highest binding affinity (Atomic contact energy= −250.40 kcal/Mol) when compared with P cadA. In vitro studies using green fluorescent protein tagged with P cadR ( gfp-P cadR) cloned in E. coli-expressed gfp protein in a concentration-dependent manner upon Cd exposure. Based on our in silico studies and in vitro molecular cloning analysis, we conclude that P cadR and CadR are active only in the presence of Cd. The CadR protein has the highest binding affinity with P cadR. As it became apparent that the cadR gene regulates the P cadR activity in the presence of Cd with high specificity, and the cadR and P cadR can be used as a biological tool for development of a microbial biosensor.

Funder

Department of Biotechnology , Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3