The association of oxidative stress and DNA damage with XRCC1 and XRCC3 polymorphisms in radiology technicians

Author:

Soylemez Esma1ORCID,Ozcagli Eren2,Korkmaz Serol3ORCID,Tok Olgu Enis4,Aydin Mehmet Serif5,Omurtag Gulden Zehra6

Affiliation:

1. Department of Pharmacology, Pendik Veterinary Control Institute, İstanbul, Turkey

2. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul University, İstanbul, Turkey

3. Department of Virology, Pendik Veterinary Control Institute, İstanbul, Turkey

4. Department of Histology and Embryology, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey

5. Regenerative and Restorative Medicine Research Center, İstanbul Medipol University, İstanbul, Turkey

6. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstanbul Medipol University, İstanbul, Turkey

Abstract

Ionizing radiation has widespread use in medicine in the diagnosis and treatment of many medical conditions. Radiology technicians are one group that is occupationally exposed to low doses of radiation. There are questions regarding whether low dose exposure to radiation could have long-term health consequences. Assessing the effect of radiation on genetic material is essential for appraising long-term health results. Hereditary variations in DNA repair genes cause differentiation in individual responses to radiation related health effects. This study aimed to determine oxidative stress and DNA damage, and their relationship to XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms in radiology technicians occupationally exposed to low dose radiation. Peripheral blood samples were collected from 45 radiology technicians and age-matched with 40 healthy control individuals working in office environments. Our results showed that radiology technicians had significantly greater oxidative stress and DNA damage than the control group, and women appeared more susceptible to occupational radiation exposure than men. Individuals with wild-type genotypes for XRCC1 (Arg/Arg) and XRCC3 (Thr/Thr) had less DNA damage. Lower DNA damage levels could be explained by the enhanced capacity to repair low dose radiation induced DNA damage. Further studies are needed to evaluate the role of DNA repair genes in individuals that are occupationally exposed to low dose radiation.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3