Affiliation:
1. Centro de Investigaciones Toxicológicas (CEITOX), CITEFA/CONICET. J.B. de La Salle 4397, B1603ALO Villa Martelli, Buenos Aires, Argentina
Abstract
Highly purified rat-liver nuclei were previously shown to have nuclear ethanol (EtOH) metabolizing system able to bioactivate alcohol to acetaldehyde and 1-hydroxyethyl radicals. These reactive metabolites were able to covalently bind to nuclear proteins and lipids potentially being able to provoke oxidative stress of nuclear components. In this study, the above-mentioned possibility was explored. Sprague Dawley male rats (125–150 g) were fed a standard Lieber and De Carli liquid diet for 28 days. Controls were pair-fed with a diet, in which EtOH was isocalorically replaced with carbohydrate. The presence of a chlorzoxazone hydroxylase activity inducible by the repetitive EtOH drinking further suggested the presence of CYP2E1 in the highly purified nuclei. Nuclei from EtOH-drinking rats evidenced significantly increased susceptibility to a t-butyl hydroperoxide challenge as detected by chemiluminescence emission, increased formation of protein carbonyls, and decreased content of protein sulfhydryls. In contrast, no significant changes in the nuclear lipid hydroperoxides formation or even decreases in the 8-oxo-7,8-dihydro-2-deoxyguanosine were observed. No significant differences were observed in different parameters of the alkaline Comet assay. In immunohistochemical studies performed, no expression of p53 was observed in the livers of the animals under the experimental conditions tested. Since nuclear proteins and lipids are known to play a role in cell growth, differentiation, repair and signaling, their alterations by either oxidative stress, or by covalent binding might be of relevance to liver tumor promotion.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献