In Situ Assessment of Genotoxic Hazards of Environmental Pollution

Author:

Sandhu Shahbeg S.1,Lower W.R.2

Affiliation:

1. Genetic Toxicology Division Health Effects Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, North Carolina

2. Environmental Trace Substances Research Center University of Missouri Columbia, Missouri

Abstract

The potential impact of the environmental pollutants on human health can be evaluated by the laboratory analysis of the environmental samples or by the measurement of the biological effects on indigenous populations and/or specific test organisms placed in the environment to be monitored. A canary in a cage, used by 19th century miners as a biological indicator for rising levels of toxic gases, is a classical example of in situ hazard identification. The induced toxic effects are often the result of synergistic and antagonistic interactions among various physical and chemical factors that are difficult to reproduce in the laboratory. Therefore, conceivably the biological effects measured on or near the impacted site have greater relevancy for hazard assessment to man than from the data derived from the environmental samples analyzed in the lab. The organisms most commonly employed for the assessment of mutagenicity under real-world conditions are: (1) flowering plants, (2) wild and captive mammals, and (3) aquatic vertebrates. Plant species such as Tradescantia paludosa, Zea mays, and Osmunda regalis have been used for monitoring ambient air quality around several major industrial cities in the U.S.A., nuclear power plants, and industrial waste sites, and also for the assessment of potential health effects of municipal sewage sludges. Domestic animals such as dogs can be used as sentinels to provide information on the effects of contaminants in the environment and have been used to a limited extent to evaluate the environmental influences on the occurrence of breast cancer and osteosarcoma. Cytogenetic analysis from feral and wild animals has been employed for assessing the health hazards and prioritizing the clean-up efforts at hazardous waste sites. Aquatic animals have been used more often than terrestrial animals or plants to identify and characterize the genotoxic effects of environmental pollution. Since 1970, a number of studies has been reported on the mutagenic and neoplastic effects on aquatic animals from coastal areas and continental rivers, lakes, and ponds. The limitations of in situ environmental assessment are lack of control over the physical environmental components, inherent variability and interactions of test organisms, lack of control of exposure doses, and difficulty of finding concurrent experimental controls. Nevertheless, flowering plants, terrestrial, and aquatic animals may serve as useful sentinels and biomarkers of environmental pollution.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Reference51 articles.

1. Induction of sister-chromatid exchanges in fish exposed to Rhine water

2. Frequencies of liver neoplasia in a feral fish population and associated carcinogens

3. Field and Laboratory Studies of Environmental Carcinogenesis in Niagara River Fish

4. Black, J.J., Dymerski, P.O. and Zapisek, W.F. (1981). Routine liquid chromatographic method for assessing polynuclear aromatic hydrocarbon pollution in fresh water environment. In: Aquatic Toxicology Hazard Assessment ( D.R. Branson and K.L. Dick-son, eds.), p. 215. Am. Soc. Test Mater., Philadelphia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3