Diethylnitrosamine aggravates cadmium-induced hepatorenal oxidative damage in prepubertal rats

Author:

Owumi Solomon E1ORCID,Dim Uche J1ORCID,Najophe Eseroghene S2ORCID

Affiliation:

1. Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria

2. Nutritional and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria

Abstract

The adverse health consequences of environmental, occupational, and dietary exposure to either diethylnitrosamine (DEN) or cadmium (Cd) have been widely investigated. However, because most environmental exposures to xenobiotics do not occur in isolation but in mixtures, the effects of simultaneous exposure to both DEN and Cd on hepatorenal function deserves investigation. The present study investigated the impact of 7 days oral co-exposure to 10 mg/kg body weight (b.w.) of DEN and 5 mg/kg b.w. of Cd on biomarkers of hepatic and renal functions, antioxidant defense systems, and oxidative stress indices in the liver and kidney of prepubertal rats. The results showed that the significant ( p < 0.05) increases in the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transferase, urea, and creatinine following separate administration of DEN and Cd to rats were further increased in the co-exposure group. Moreover, marked decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase as well as glutathione levels following individual administration of DEN and Cd to rats were exacerbated in the co-exposure group. Further, the marked increase in the lipid peroxidation level and the histopathological lesions in the liver and kidney of rats treated with DEN or Cd alone were intensified in the co-exposure group These findings indicate that co-exposure to DEN and Cd elicited more severe hepatic and renal oxidative damage in the rats, thus suggesting a greater risk to humans who are co-exposed to them.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3