Spinal reflexes in normal and sulfite oxidase deficient rats: effect of sulfite exposure

Author:

Küçükatay V1,Genç O1,Kocamaz E2,Emmungil G1,Erken HA1,Bağcı H3

Affiliation:

1. Faculty of Medicine, Department of Physiology, Pamukkale University, Kinikli, Denizli, Turkey

2. Faculty of Medicine, Department of Histology and Embryology, Pamukkale University, Kinikli, Denizli, Turkey

3. Faculty of Medicine, Department of Medical Biology, Pamukkale University, Kinikli, Denizli, Turkey

Abstract

Sulfites, which are commonly used as food preservatives, are continuously formed in the body during metabolism of sulfur-containing amino acids. Sulfite is oxidized to sulfate ion by sulfite oxidase (SOX, EC. 1.8.3.1). Although sulfite treatment has been reported to increase the excitability of some neurons in vitro, the possible effects of sulfite on neuronal excitability in vivo remain unclear. The aim of this study was to investigate the possible effects of sulfite treatment on spinal reflexes in anesthetized SOX competent and deficient rats. For this purpose, male albino rats used in this study were divided into four groups such as control group (C), sulfite group (CS), SOX deficient group (D), and SOX deficient + sulfite group (DS). Rats in SOX deficient groups were made deficient in SOX by the administration of low molybdenum (Mo) diet (AIN 76, Research Dyets Inc., USA) with concurrent addition of 200-ppm tungsten (W) to their drinking water in the form of sodium tungstate (NaWO4). Sulfite in the form of sodium metabisulfite (Na2O5S2, 70 mg/kg) was given orally by adding to drinking water to the S and DS groups. Monosynaptic reflex potentials were recorded from the ipsilateral L5 ventral root. SOX deficient rats had an approximately 15-fold decrease in hepatic SOX activity compared with normal rats. This makes SOX activity of SOXD rats in the range of human SOX activity. The results of this study show that sulfite treatment significantly increases the amplitude of the monosynaptic reflex response in both S and DS groups with respect to their respective control groups (C and D). SOX deficient rats also had enhanced spinal reflexes when compared with control rats. In conclusion, sulfite has increasing effects on the excitability of spinal reflexes and we speculate that this compound may exhibit its effects on nervous system by affecting sodium channels.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3