Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes

Author:

Kiruthiga PV1,Karthikeyan K2,Archunan G2,Pandian S Karutha1,Devi K Pandima1

Affiliation:

1. Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India

2. Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

Abstract

Benzo(a)pyrene (B(a)P), which is commonly used as an indicator species for polycyclic aromatic hydrocarbon (PAH) contamination, has a large number of hazardous consequences on human health. In the presence of the enzyme cytochrome-P-450 1A1 (CYP1A1), it undergoes metabolic activation to form reactive intermediates that are capable of inducing mutagenic, cytotoxic, teratogenic and carcinogenic effects in various species and tissues. Research within the last few years has shown that flavonoids exhibit chemopreventive effect against these toxins. In the present study, the protective effect of silymarin (a flavonoid) against B(a)P-induced toxicity was monitored in Wistar rats by evaluating the levels of hepatic phase I (CYP1A1), phase II enzymes (glutathione-S-transferase, epoxide hydroxylases, uridinediphosphate glucuronosyltransferases, NAD(P)H: quinone oxidoreductase 1, sulfotransferases), cellular antioxidant enzyme heme oxygenase and total glutathione. The results reveal that silymarin possesses substantial protective effect against B(a)P-induced damages by inhibiting phase I detoxification enzyme CYP1A1 and modulating phase II conjugating enzymes, which were confirmed by histopathological analysis. Overall, the inhibition of CYP1A1 and the modulation of phase II enzymes may provide, in part, the molecular basis for the effect of silymarin against B(a)P.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3