Nickel-induced apoptosis and relevant signal transduction pathways in Caenorhabditis elegans

Author:

Cai Kezhou 1,Ren Chong 2,Yu Zengliang 3

Affiliation:

1. Biology and Food Industrial College, Hefei University of Technology, Hefei, People's Republic of China, Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, People's Republic of China

2. Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, People's Republic of China,

3. Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Sciences, Hefei, People's Republic of China

Abstract

Many investigations have shown that nickel exposure can induce micronuclei generation, inhibit DNA repair and induce cell apoptosis, both in cells and tissues. However, there is a lack of appropriate in vivo animal models to study the underlying mechanisms of nickel-induced apoptosis. The model organism, Caenorhabditis elegans, has been shown to be a good model for investigating many biological processes. In the present study, we detected 0.01 mM nickel induced significantly germline cell apoptosis after treatment for 12 hours, which demonstrated that C. elegans could be a mammalian in vivo substitute model to study the mechanisms of apoptosis. Then gene knockout C. elegans strains were utilized to investigate the relationship between nickel-induced apoptosis and relevant signal pathways, which were involved in DNA damage and repair, apoptosis regulation and damage signal transduction. The results presented here demonstrated that nickel-induced apoptosis was independent of the DNA damage response gene, such as hus-1, p53/cep-1 and egl-1. The loss-of-function of the genes that related to Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPK) signaling cascades suppressed nickel-induced germline apoptosis, while ERK signaling cascades have no effects on the nickel-induced germline apoptosis.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3