Vitamin A physiology and its application as a biomarker of contaminant-related toxicity in marine mammals: a review

Author:

Simms Wendy1,Ross Peter S.2

Affiliation:

1. Institute of Ocean Sciences, P.O. Box 6000, Sidney, BC V8L 4B2, Canada

2. Institute of Ocean Sciences, P.O. Box 6000, Sidney, BC V8L 4B2, Canada,

Abstract

In recent decades, marine mammal populations living in highly polluted areas have experienced incidences of low reproductive success, developmental abnormalities and disease outbreaks. In many of these cases, environmental contaminants were suspected as causal or contributing factors. However, demonstrating a mechanistic link between contaminant exposure and effect in marine mammal populations has proven challenging. Consequently, the development and application of relatively noninvasive biomarkers represents a potentially valuable means of monitoring wildlife populations exposed to elevated levels of contaminants. One touted biomarker is vitamin A (retinol), a “dietary hormone” whose metabolites are required for reproduction, growth, development, immune function, vision and epithelial maintenance. Laboratory studies have shown that many contaminants, including polychlorinated biphenyls (PCBs), polychlorinated dibenzo- para-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), can disrupt vitamin A physiology and alter the distribution of its essential metabolites. Field studies suggest that complex environmental mixtures of these chemicals can also interfere with vitamin A dynamics in free-ranging marine mammals and other fish-eating wildlife. However, circulatory retinol, which is the least invasive measurement of vitamin A status, appears to have variable responses to contaminant exposure. In addition, “normal” circulatory retinol levels have not yet been described for most wildlife species, and not enough is known about the natural physiological events that can alter these concentrations. Confounding factors must therefore be characterized before retinoids can be used as an effective indicator of adverse health effects in marine mammals exposed to elevated levels of environmental contaminants.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3