The application of FLUENT in simulating outcomes from chlorine leakage accidents in a typical chemical factory

Author:

Li Jianfeng1,Zhang Bin1,Tang Sichuang1,Tong Ruipeng2

Affiliation:

1. Beijing Municipal Institute of Labor Protections, Beijing, People’s Republic of China

2. Faculty of Resources and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, People’s Republic of China

Abstract

For improvements in market competitiveness, old brand chemical enterprises did some expansion and reconstruction on the base of original equipment. Because it is the reconstruction on the basis of the existing production equipment, it is bound to raise problems of reutilization existing in pipelines and equipment. A simplified typical chemical factory was established referring the actual workshop layout. Further, trustable accident scenarios were conducted to reveal the diffusion process. In a larger leakage rate, the chlorine leak-affected area in the downwind became larger a bit, also in a relatively shorter time, lethal scope will become larger quickly, resulting in more threats to the lives and properties in the vicinity of the factories. Further, it is not possible that the heavier-than-air effect of the chlorine will inevitably result in a higher concentration for a lower surface than that of higher surface. Actually at a certain height, a relatively higher monitoring surface has a larger diffusion range and a larger concentration than a relatively lower surface. It can be inferred that within a certain height, chlorine diffusion rate closer to the ground would be slower due to existence of turbulence or the relative resistance on the ground.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Reference23 articles.

1. Ellenhom MJ (1988) Medical Toxicology-Diagnosis and Treatment of Human Poisoning. New York, NY: Elsevier Science Publishing Company, pp. 878–879.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3