The Effects of Thyroid Hormone Level and Action in Developing Brain: Are These Targets for the Actions of Polychlorinated Biphenyls and Dioxins?

Author:

Sher Ellen S.1,Xiao Ming Xu 2,Adams Perrie M.3,Craft Cheryl M.4,Stein Stuart A.5

Affiliation:

1. Divisions of Neurology and Endocrinology Children's Hospital of Orange County and the Pediatric Subspecialty Faculty Orange, California

2. Department of Anatomy and Neurobiology St. Louis University School of Medicine St. Louis, Missouri

3. Department of Psychiatry University of Texas Southwestern Medical School Dallas, Texas

4. Department of Cell and Neurobiology University of Southern California School of Medicine Los Angeles, California

5. Department of Neurology University of Miami School of Medicine Miami, Florida Division of Neurology Children's Hospital of Orange County and the Pediatric Subspecialty Faculty Orange, California

Abstract

Alterations in thyroid hormone level or responsivity to thyroid hormone have significant neurologic sequelae throughout the life cycle. Duringfetal and early neonatal periods, disorders of thyroid hormone may lead to the development of motor and cognitive disorders. During childhood and adult life, thyroid hormone is required for neuronal maintenance as well as normal metabolic function. Those with an underlying disorder of thyroid hormone homeostasis or mitochondrial function may be at greater risk for developing cognitive, motor, or metabolic dysfunction upon exposure to substances which alter thyroid hormone economy. Polychlorinated biphenyls (PCBs) and dioxins have been argued to interfere with thyroid hormone action and thus may affect the developing and mature brain. Animal models provide useful tools for studying the effects of thyroid hormone disorders and the effects of environmental endocrine disruptors. The congenitally hypothyroid, hyt/hyt, mouse exhibits abnormalities in both the cognitive and motor systems. In this mouse and other animal models of thyroid hormone disorders, delayed somatic and reflexive development are noted, as are permanent deficits in hearing and locomotor and adaptive motor behavior. This animal's behavioral abnormalities are predicated on anatomic abnormalities in the nervous system. In turn, these abnormalities are correlated with differences in neuronal structural proteins. In normal mice, the expression of mRNAs coding for these proteins occurs temporally with the onset of autonomous thyroid hormone production. The hyt/hyt mouse has a mutation in the thyroid stimulating hormone receptor (TSHr) gene which renders it incapable of transducing the TSH signal in the thyrocyte to produce thyroid hormone. Some behavioral and possibly some biochemical abnormalities in mice exposed to PCBs are similar to those seen in the hyt/hyt mouse. In addition to direct effects on brain development and neuronal maintenance, thyroid hormone is necessary for maintaining metabolic functioning through its influence on mitochondria. Because the brain is particularly sensitive to inadequate energy generation, disorders of thyroid hormone economy also indirectly impair brain functioning. Alterations in thyroid hormone level result in differing expression of mitochondrial genes. Mutations in these mitochondrial genes lead to well-recognized syndromes of encephalomyopathy, myopathy, and multisystem disorder. Hence, PCBs and dioxins, by possibly altering the thyroid hormone milieu, may alter thefunctioning of mitochondria in the generation of adenosine triphosphate (ATP). The use of animal models of thyroid hormone deficiency for behavioral, anatomic, histologic, and molecular comparison will help elucidate the mechanisms of action of these putative endocrine-disrupting compounds. The study of thyroid hormone disorders provides a template for relating thyroid hormone mediated effects on the brain to these compounds.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3