Selective Vulnerability of Dopaminergic Systems To Industrial Chemicals: Risk Assessment of Related Neuroendocrine Changes

Author:

Mutti Antonio1,Smargiassi Audrey1

Affiliation:

1. Laboratory of Industrial Toxicology University of Parma Medical School Parma, Italy

Abstract

Increased serum prolactin (PRL) is a common finding among subjects exposed to styrene, perchloroethylene, lead (Pb), and manganese (Mn) at levels below the current threshold limit values. On a group basis, abnormally high basal PRL shows a dose-related distribution among workers exposed to styrene, Pb, and Mn. On the basis of dose-response relationships, the benchmark doses (BMD) for styrene metabolites in urine, lead in blood (Pb-B), and Mn in urine (Mn-U), are 4 mg/g creatinine, 112 μg/L, and 0.3 μg/L, respectively. Noteworthy, the BMD for Mn-U and Pb-B is well below the upper reference limit. A shift in the distribution but not in the prevalence of abnormally high values of serum PRL was observed among perchloroethylene-exposed dry cleaners, which makes interpretation in terms of risk difficult. The measurement of PRL thus provides opportunities for early identification of excess exposure to neurotoxic chemicals affecting dopaminergic control of pituitary secretion. For styrene, Pb, and Mn the BMD provides an objective and statistically determined threshold, which seems to be in good agreement with the estimated no-observed-adverse-effect-level (NOAEL). The NOAEL, however, is based on traditional approaches that require the application of uncertainty factors, e.g., a default factor of 10 when extrapolating the NOAEL from the lowest-observed- adverse-effect-level (LOAEL). Due to its sensitivity to a number of potential confounders, caution must be exercised when using PRL as a screening test at the individual level. Also, age and sex dependent variations in susceptibility may hamper extrapolations from the occupational settings to the general population.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3