Manganese exposure causes movement deficit and changes in the protein profile of the external globus pallidus in Sprague Dawley rats

Author:

Zhang Kaiqin12ORCID,He Kaiwu23,Xu Jia2,Nie Lulin2,Li Shupeng3,Liu Jianjun2,Long Dingxin1,Dai Zhongliang4,Yang Xifei2ORCID

Affiliation:

1. School of Public Health, University of South China, Hunan Hengyang, China

2. Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China

3. School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China

4. The department of Anesthesiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China

Abstract

Manganese (Mn) is required for normal brain development and function. Excess Mn may trigger a parkinsonian movement disorder but the underlying mechanisms are incompletely understood. We explored changes in the brain proteomic profile and movement behavior of adult Sprague Dawley (SD) rats systemically treated with or without 1.0 mg/mL MnCl2 for 3 months. Mn treatment significantly increased the concentration of protein-bound Mn in the external globus pallidus (GP), as demonstrated by inductively coupled plasma mass spectrometry. Behavioral study showed that Mn treatment induced movement deficits, especially of skilled movement. Proteome analysis by two-dimensional fluorescence difference gel electrophoresis coupled with mass spectrometry revealed 13 differentially expressed proteins in the GP of Mn-treated versus Mn-untreated SD rats. The differentially expressed proteins were mostly involved in glycolysis, metabolic pathways, and response to hypoxia. Selected pathway class analysis of differentially expressed GP proteins, which included phosphoglycerate mutase 1 (PGAM1), primarily identified enrichment in glycolytic process and innate immune response. In conclusion, perturbation of brain energy production and innate immune response, in which PGAM1 has key roles, may contribute to the movement disorder associated with Mn neurotoxicity.

Funder

Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3