Influence of α-tocopherol and α-lipoic acid on bisphenol-A-induced oxidative damage in liver and ovarian tissue of rats

Author:

Avci Bahattin1,Bahadir Aysegul1,Tuncel Ozgur Korhan1,Bilgici Birsen1

Affiliation:

1. Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey

Abstract

Bisphenol A (BPA) is a commonly used material in daily life, and it is argued to cause oxidative stress in liver and ovarian tissue. α-Lipoic acid (ALA) and α-tocopherol (ATF), two of the most effective antioxidants, may play a role in preventing the toxic effect. Therefore, the purpose of this study was to examine the beneficial effects of ALA, ATF, and that of ALA + ATF combination on oxidative damage induced by BPA. Female Wistar rats were divided into five groups (control, BPA, BPA + ALA, BPA + ATF, and BPA + ALA + ATF). BPA (25 mg/kg/day), ALA (100 mg/kg/day), and ATF (20 mg/kg/day) were administered for 30 days.  The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), liver malondialdehyde (L-MDA) and glutathione peroxidase (L-GPx), and ovarian malondialdehyde (Ov-MDA) and nitric oxide (Ov-NO) were significantly higher in the BPA-treated groups compared with the control group. The levels of AST and ALT decreased in the BPA + ALA, BPA + ATF, and BPA + ALA + ATF groups compared with the BPA group. Similarly, BPA + ALA or BPA + ATF led to decreases in L-MDA and Ov-MDA levels compared with the BPA group. However, the BPA + ALA + ATF group showed a significant decrease in L-MDA levels compared with the BPA + ALA group and the BPA + ATF group. The levels of L-GPx decreased in the BPA + ATF and the BPA + ALA + ATF groups compared with the BPA group. The administration of ATF and ALA + ATF significantly decreased the Ov-NO levels.  This study demonstrates that BPA causes oxidative damage in liver and ovarian tissues. ALA, ATF, or their combination were found to be beneficial in preventing BPA-induced oxidative stress.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3