Genotoxicity in primary human peripheral lymphocytes after exposure to lithium titanate nanoparticles in vitro

Author:

Akbaba Giray B1,Turkez Hasan2,Sönmez Erdal3,Tatar Abdulgani4,Yilmaz Mehmet5

Affiliation:

1. Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey

2. Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey

3. Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey

4. Department of Medical Genetics, Faculty of Medicine, Ataturk University, Erzurum, Turkey

5. Department of Physics, K. K. Education Faculty, Atatürk University, Erzurum, Turkey

Abstract

Lithium titanate (Li2TiO3) nanoparticles (LTT NPs; <100 nm) are widely used in battery technology, porcelain enamels, and ceramic insulating bodies. With the increased applications of LTT NPs, the concerns about their potential human toxicity effects and their environmental impact were also increased. However, toxicity data for LTT NPs relating to human health are very limited. Therefore, the purpose of this study was to evaluate whether LTT NPs are able to induce genetic damage in human peripheral lymphocytes in vitro when taking into consideration that DNA damage plays an important role in carcinogenesis. With this aim, the chromosome aberrations (CA), sister chromatid exchanges (SCE), and micronucleus (MN) assays were used as genotoxicity end points. Human peripheral lymphocytes obtained from five healthy male volunteers were exposed to LTT NPs at final dispersed concentrations ranging from 0 to 1000 μg/mL for 72 h at 37°C. The obtained results indicated that LTT NPs compound did not induce DNA damage in human peripheral lymphocytes as depicted by CA/cell, SCE/cell, and MN/1000 cell values in all concentrations tested. In summary, our results revealed that exposure to LTT NPs is not capable of inducing DNA lesions in human peripheral lymphocytes for the first time.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3