Intranasal exposure to silica nanoparticles induces alterations in pro-inflammatory environment of rat brain

Author:

Parveen Arshiya1,Rizvi Syed Husain Mustafa1,Sushma 2,Mahdi Farzana3,Ahmad Iqbal2,Singh Prem Prakhash3,Mahdi Abbas Ali1

Affiliation:

1. Department of Biochemistry, King George’s Medical University, Lucknow, Uttar Pradesh, India

2. Fibre Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India

3. Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India

Abstract

Silica nanoparticles (SiNPs) are being used increasingly in biomedical and industrial fields; however, their adverse effects on human health have not been fully investigated. In this study, we focused on some of the toxicological aspects of SiNPs by studying oxidative stress and pro-inflammatory responses in the frontal cortex, corpus striatum and hippocampus regions of rat brain. Wistar rats were exposed to SiNPs of size 80 nm and 10 nm at a dose of 150 µg/50 µL phosphate-buffered saline/rat for 30 days. The results indicated a significant increase of lipid peroxide levels and hydrogen peroxide content in various regions of the treated rat brain. Moreover, these changes were accompanied with a significant decrease in the activities of manganese superoxide dismutase, glutathione reductase, catalase and reduced glutathione in different brain regions, suggesting impaired antioxidant defence system. Furthermore, SiNPs exposure not only increased messenger RNA (mRNA) and protein expression of nuclear factor-κB (NF-κB) but also significantly increased the mRNA and protein levels of tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and monocyte chemoattractant protein 1 (MCP-1) in different regions of rat brain. Cumulatively, these data suggest that SiNPs induced the activation of NF-κB and increased the expression of TNF-α, IL-1β and MCP-1 in rat brain, possibly via redox-sensitive cellular signalling pathways.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3