Effect of low-dose exposure of aluminium oxide nanoparticles in Swiss albino mice: Histopathological changes and oxidative damage

Author:

De Arpita1,Ghosh Swarupa2,Chakrabarti Manoswini1,Ghosh Ilika13,Banerjee Ritesh1,Mukherjee Anita1ORCID

Affiliation:

1. Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India

2. Department of Microbiology, Adamas University, Kolkata, West Bengal, India

3. Graduate School of Science and Engineering, Saitama University, Saitama, Japan

Abstract

Rapid growth in the use of aluminium oxide nanoparticles (Al2O3 NPs) in various fields such as medicine, pharmacy, cosmetic industries, and engineering creates concerns since the literature is replete with data regarding their toxicity in living organisms. The objective of the present study was to demonstrate the potential toxicological manifestations of repeated exposure to Al2O3 NP at low doses in vivo. In the present study, Al2O3 NP was orally administered at 15, 30 or 60 mg kg−1 body weight for 5 days to Swiss albino male mice. A battery of well-defined assays was undertaken to evaluate aluminium (Al) bioaccumulation, haematological and histological changes, oxidative damage and genotoxicity. Physico-chemical characterisation demonstrated increases in hydrodynamic diameter along the concentration gradient of Al2O3 NP dispersed in MilliQ water. Brain, liver, spleen, kidney and testes showed high Al retention levels. Histopathological lesions were prominent in the brain and liver. Al2O3 NP treatment increased levels of lipid peroxidation and decreased glutathione content in the test organs at all dose levels. The enzyme activities of catalase and superoxide dismutase were also significantly altered. DNA damage quantified using the comet assay was markedly increased in all the soft organs studied. Anatomical abnormalities, redox imbalance and DNA damage were positively correlated with Al retention in the respective organs. Size, zeta potential and colloidal state might have contributed to the bio-physico-chemical interactions of the NPs in vivo and were responsible for the non-linear dose response. The overall data indicate that Al2O3 NP exposure may result in adverse health consequences, inclusive of but not limited to disturbed redox homeostasis, hepatocellular toxicity, neurodegeneration and DNA damage.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3