Lead induced oxidative DNA damage in battery-recycling child workers from Bangladesh

Author:

Arif Mohammad1,Islam MM Towhidul1,Shekhar Hossain Uddin1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh

Abstract

Lead exposure can damage cells directly by effecting DNA or indirectly by modifying proteins and enzymes. In Bangladesh, many working children are exposed to a very high level of lead during their early life due to their involvement with lead-oriented professions. This imposes a severe threat to the growth and development of the children. Therefore to study the effect of lead, we enrolled 60 age-matched male children, from an area of old Dhaka city, where battery-recycling shops are located, depending on their blood lead concentration. If the children had a plasma lead concentration above the WHO recommended threshold level of 10 µg/dl, we grouped them as test subjects and others as control subjects to determine the effect of lead on different biochemical parameters of the body. Compared to the controls, acculumlation of the lipid peroxidation product, malondialdehyde, increased significantly in test subjects ( p < 0.01). Lead exposure also increased the protein carbonyl content ( p < 0.05) and significantly decreased the plasma glutathione levels of test subjects compared to the controls ( p < 0.05). While comparing the lead-exposed group against controls, it was found that the percentage of damaged DNA, as measured using the Comet assay, significantly increased in tail ( p < 0.01) and decreased in head regions. All of these results suggest that high-plasma lead content may induce an oxidative stress to the study population, which may lead to DNA damage.

Funder

University of Dhaka

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3