The protective effects of carnosine in alcohol-induced hepatic injury in rats

Author:

Baykara B1,Mıcılı S Cilaker2,Tugyan K2,Tekmen I2,Bagriyanik HA2,Sonmez U2,Sonmez A3,Oktay G4,Yener N4,Ozbal S2

Affiliation:

1. School of Physical Therapy and Rehabilitation, Dokuz Eylul University, Balcova, Izmir, Turkey

2. Department of Histology and Embryology, Dokuz Eylul University Medical School, Balcova, Izmir, Turkey

3. Department of Physiology, Dokuz Eylul University Medical School, Balcova, Izmir, Turkey

4. Department of Biochemistry, Dokuz Eylul University Medical School, Balcova, Izmir, Turkey

Abstract

Consumption of alcohol leads to oxidative stress in liver by inducing lipid peroxidation. The aim of this study was to investigate the effects of carnosine (CAR) in alcohol-induced liver injury by biochemical and histomorphological evaluations. The rats were divided into four groups, namely, control group, alcohol (AL) group, CAR group and AL + CAR group. Three doses of ethanol (5 g/kg, 25% (v/v) in distilled water) were given by nasogastric catheter for twice-a-day. CAR (100 mg/kg) was given 1 h before the administration of ethanol using the same method. Levels of alanine aminotransferase, aspartate aminotransferase, myeloperoxidase and malondialdehyde were significantly increased in the AL group compared with control, CAR and AL + CAR groups. Glutathione level was significantly decreased in the AL group, while it was increased in the AL + CAR group. Immunoreactivity of caspase-3 and bax increased in the hepatocytes of AL group when compared with control and AL + CAR groups. Expression of bcl-2 was decreased in AL group than AL + CAR group. Under electron microscopy, dense mitochondria, accumulation of lipid, sinusoidal dilatation, vacuolization and decrease in the number of microvilli were observed in AL group, while these findings were markedly less in the AL + CAR group. In conclusion, pretreatment of CAR is effective for recovering biochemical alterations and morphologic damage in the liver of rats treated with ethanol.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3