Inorganic arsenic-mediated upregulation of TUG1 promotes apoptosis in human bronchial epithelial cells by activating the p53 signaling pathway

Author:

Chen Qian1,Sun Mingjun23,Cheng Huirong3,Qi Jun3,Tan Jingwen4,Gu Yun1,Yu Tianle5,Li Ming6,Xu Hao7,He Yuefeng4ORCID,Wen Weihua3ORCID

Affiliation:

1. School of Public Health, Dali University, Dali, China

2. Southeast University, Nanjing, China

3. Yunnan Center for Disease Control and Prevention, Kunming, China

4. School of Public Health, Kunming Medical University, Kunming, China

5. Weihai Central Hospital, Weihai, China

6. Haida Hospital, Weihai, China

7. Tibet Kangcheng Cancer Hospital, Tibet, China

Abstract

Exposure to arsenic, an environmental contaminant, is known to cause arsenicosis and cancer. Although considerable research has been conducted to understand the underlying mechanism responsible for arsenic-induced cancers, the precise molecular mechanisms remain unknown, especially at the epigenetic regulation level. Long non-coding RNAs (LncRNAs) that have been shown to mediate various biological processes, including proliferation, apoptosis, necrosis, and mutagenesis. There are few studies on LncRNAs and biological damage caused by environmental pollutants. The LncRNAs taurine upregulated gene 1 (TUG1) regulates cell growth both in vitro and in vivo, and contributes its oncogenic role. However, the precise roles and related mechanisms of arsenic-induced cell apoptosis are still not fully understood owing to controversial findings in the literature. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed higher expression levels of TUG1 in people occupationally exposed to arsenic than in individuals living away from the source of arsenic exosure ( N = 25). In addition, the results suggested that TUG1 was involved in arsenic-induced apoptosis. Furthermore, knockdown experiments showed that silencing of TUG1 markedly inhibited proliferation, whereas depletion of TUG1 led to increased apoptosis. The TUG1-small interfering RNA (siRNA) combination with arsenic (3 μM/L) slightly increased apoptosis compared with the TUG1-siRNA. Additionally, the knockdown experiments showed that the silencing of TUG1 by siRNA inhibited proliferation and promoted apoptosis by inducing p53, p-p53 (ser392), FAS, BCL2, MDM2, cleaved-caspase7 proteins in 16HBE cells. These results indicated that arsenic mediates the upregulation of TUG1 and induces cell apoptosis via activating the p53 signaling pathway.

Funder

The Ten thousand plan medical talents support program of Yunnan Province

The Natural Science Foundations of China

The Project for Culturing Leading Talents in Medicine of Yunnan

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3