Affiliation:
1. Department of Chemical Engineering and Biotechnology, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
Abstract
This article reports in silico analysis of methyl isocyanate (MIC) on different key immune proteins against Mycobacterium tuberculosis. The analysis shows that MIC is released in the Bhopal gas tragedy in 1984, which is highly toxic and extremely hazardous to human health. In this study, we have selected immune proteins to perform molecular docking with the help of Autodock 4.0. Results show that the CD40 ligand and alpha5beta1 integrin have higher inhibition compared to plasminogen activator urokinase, human glutathione synthetase, mitogen-activated protein kinase (P38 MAPK 14), surfactant protein-B, -D (SP-D), and pulmonary SP-D. MIC interacted with His-125, Try-146 residue of CD40 ligand and Ala-149, and Arg-152 residue of alpha5beta1 integrin and affects the proteins functioning by binding on their active sites. These inhibitory conformations were energetically and statistically favored and supported the evidence from wet laboratory experiments reported in the literature. We can conclude that MIC directly or indirectly affects these proteins, which shows that survivals of the disaster suffer from the diseases like tuberculosis infection and lung cancer.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献