Affiliation:
1. Department of Psychology, Florida State University
2. Department of Psychology, Harvard University
3. Departments of Bioinformatics and Psychiatry, Vanderbilt University Medical Center
Abstract
For decades, our ability to predict suicidal thoughts and behaviors (STBs) has been at near-chance levels. The objective of this study was to advance prediction by addressing two major methodological constraints pervasive in past research: (a) the reliance on long follow-ups and (b) the application of simple conceptualizations of risk. Participants were 1,021 high-risk suicidal and/or self-injuring individuals recruited worldwide. Assessments occurred at baseline and 3, 14, and 28 days after baseline using a range of implicit and self-report measures. Retention was high across all time points (> 90%). Risk algorithms were derived and compared with univariate analyses at each follow-up. Results indicated that short-term prediction alone did not improve prediction for attempts, even using commonly cited “warning signs”; however, a small set of factors did provide fair-to-good short-term prediction of ideation. Machine learning produced considerable improvements for both outcomes across follow-ups. Results underscore the importance of complexity in the conceptualization of STBs.
Funder
u.s. department of defense
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献