A Novel Nomogram for Predicting Warfarin-Related Bleeding: A Retrospective Cohort Study

Author:

Yang Shaohua1,Yao Wensen2ORCID

Affiliation:

1. Department of Cardiology, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China

2. Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun, China

Abstract

Warfarin is a widely used anticoagulant, and bleeding complications are the main reason why patients discontinue the drug. Currently, there is no nomogram model for warfarin-associated bleeding risk. The aim of this study was to develop a risk-prediction nomogram model for warfarin-related major and clinically relevant non-major (CRNM) bleeding. A total of 280 heart disease outpatients taking warfarin were enrolled, 42 of whom experienced major or CRNM bleeding at the one-year follow-up. The Least Absolute Shrinkage and Selection Operator regression model was employed to identify potential predictors. Backward stepwise selection with the Akaike information criterion was used to establish the optimal predictive nomogram model. The receiver operating characteristic (ROC) curve, calibration plot, Hosmer–Lemeshow goodness-of-fit test, and decision curve analysis (DCA) were used to evaluate the performance of the nomogram. The nomogram consisted of four predictors: female (OR = 1.85; 95% CI: 0.91-3.94), TIA (OR = 6.47; 95% CI: 1.85-22.7), TTR (OR = 0.99; 95% CI: 0.97-1.00), and anemia (OR = 2.30; 95% CI: 1.06-4.84). The model had acceptable discrimination (area under the ROC curve = 0.68, 95% CI: 0.59-0.78), and was significantly better than the existing nine warfarin-related bleeding prediction scoring systems. The calibration plot and Hosmer–Lemeshow test (χ² = 7.557; P = .478) indicated well-calibrated data in the model. The DCA demonstrated good clinical utility. In this study, we developed a nomogram to predict the risk of warfarin-related major or CRNM bleeding. The model has good performance, allows rapid risk stratification of warfarin users, and provides a basis for personalized treatment.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3