Establishment of a Predictive Model for Poor Prognosis of Incomplete Revascularization in Patients with Coronary Heart Disease and Multivessel Disease

Author:

Lian Huan1ORCID,Zhao Zhuoyan1,Ma Kelin1,Ding Zhenjiang1ORCID,Sun Lixian1ORCID,Zhang Ying1ORCID

Affiliation:

1. Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China

Abstract

Objective To establish a predictive model for poor prognosis after incomplete revascularization (ICR) in patients with multivessel coronary artery disease (MVD). Methods Clinical data of 757 patients with MVD and ICR after percutaneous coronary intervention (PCI) in the Affiliated Hospital of Chengde Medical University from January 2020 to August 2021 were retrospectively collected. The least absolute shrinkage and selection operator regression method was used to screen variables, and multivariate logistic regression was used to establish a predictive model. An independent cohort was used to validate the model. The C-statistic was used to verify and evaluate the discriminative ability of the model; the calibration curve was drawn, and the decision curve analysis (DCA) was performed to evaluate the calibration degree, the clinical net benefit, and the practicability of the model. Results The predictive factors included female, age, unconjugated bilirubin, uric acid, low-density lipoprotein, hyperglycemia, total occlusion, and severe tortuosity lesion on coronary angiography. The C-statistic of the training and validation sets were 0.628 and 0.745, respectively. The statistical value of the Hosmer–Lemeshow test for the calibration curve of the training and validation sets were 5.27(P = 0.873) and 6.27 (P = 0.792), respectively. DCA showed that the model was clinically applicable when the predicted probability value of major adverse cardiovascular events(MACEs) ranged from 0.07 to 0.68. Conclusions We established a predictive model for poor prognosis after ICR in patients with MVD. The predictive and calibration ability and the clinical net benefit of the predictive model were good, indicating that it can be used as an effective tool for the early prediction of poor prognosis after ICR in patients with MVD.

Publisher

SAGE Publications

Subject

Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3