Development and Validation of a Predictive Model for Chronic Kidney Disease After Percutaneous Coronary Intervention in Chinese

Author:

Zhang Ying12ORCID,Wang Jianlong1,Zhai Guangyao1,Zhou Yujie1

Affiliation:

1. Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University,Beijing, China

2. Affiliated Hospital of Chengde Medical College, Chengde, China

Abstract

Aim There is no model for predicting the outcomes for coronary heart disease (CHD) patients with chronic kidney disease (CKD) after percutaneous coronary intervention (PCI). To develop and validate a model to predict major adverse cardiovascular events (MACEs) in patients with comorbid CKD and CHD undergoing PCI. Methods We enrolled 1714 consecutive CKD patients who underwent PCI from January 1, 2008 to December 31, 2017. In the development cohort, we used least absolute shrinkage and selection operator regression for data dimension reduction and feature selection. We used multivariable logistic regression analysis to develop the prediction model. Finally, we used an independent cohort to validate the model. The performance of the prediction model was evaluated with respect to discrimination, calibration, and clinical usefulness. Results The predictors included a positive family history of CHD, history of revascularization, ST segment changes, anemia, hyponatremia, transradial intervention, the number of diseased vessels, dose of contrast media >200 ml, and coronary collateral circulation. In the validation cohort, the model showed good discrimination (area under the receiver operating characteristic curve, 0.612; 95% confidence interval: 0.560, 0.664) and good calibration (Hosmer-Lemeshow test, P  =  0.444). Decision curve analysis demonstrated that the model was clinically useful. Conclusions We created a nomogram that predicts MACEs after PCI in CHD patients with CKD and may help improve the screening and treatment outcomes.

Funder

National Key Research and Development Program of China

Beijing Municipal Administration of Hospitals’ Mission Plan

Beijing Municipal Administration of Hospitals’ Ascent Plan

Publisher

SAGE Publications

Subject

Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3