A Machine Learning–Based Model to Predict Acute Traumatic Coagulopathy in Trauma Patients Upon Emergency Hospitalization

Author:

Li Kaiyuan1,Wu Huitao2,Pan Fei1,Chen Li1,Feng Cong1,Liu Yihao1,Hui Hui1,Cai Xiaoyu3,Che Hebin2,Ma Yulong4,Li Tanshi1ORCID

Affiliation:

1. Department of Emergency, The First Medical Center to Chinese People’s Liberation Army General Hospital, Beijing, China

2. National Engineering Laboratory for Medical Big Data Application Technology, The First Medical Center to Chinese People’s Liberation Army General Hospital, Beijing, China

3. Department of Blood Transfusion, The First Medical Center to Chinese People’s Liberation Army General Hospital, Beijing, China

4. Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing, China

Abstract

Acute traumatic coagulopathy (ATC) is an extremely common but silent murderer; this condition presents early after trauma and impacts approximately 30% of severely injured patients who are admitted to emergency departments (EDs). Given that conventional coagulation indicators usually require more than 1 hour after admission to yield results—a limitation that frequently prevents the ability for clinicians to make appropriate interventions during the optimal therapeutic window—it is clearly of vital importance to develop prediction models that can rapidly identify ATC; such models would also facilitate ancillary resource management and clinical decision support. Using the critical care Emergency Rescue Database and further collected data in ED, a total of 1385 patients were analyzed and cases with initial international normalized ratio (INR) values >1.5 upon admission to the ED met the defined diagnostic criteria for ATC; nontraumatic conditions with potentially disordered coagulation systems were excluded. A total of 818 individuals were collected from Emergency Rescue Database as derivation cohorts, then were split 7:3 into training and test data sets. A Pearson correlation matrix was used to initially identify likely key clinical features associated with ATC, and analysis of data distributions was undertaken prior to the selection of suitable modeling tools. Both machine learning (random forest) and traditional logistic regression were deployed for prediction modeling of ATC. After the model was built, another 587 patients were further collected in ED as validation cohorts. The ATC prediction models incorporated red blood cell count, Shock Index, base excess, lactate, diastolic blood pressure, and potential of hydrogen. Of 818 trauma patients filtered from the database, 747 (91.3%) patients did not present ATC (INR ≤ 1.5) and 71 (8.7%) patients had ATC (INR > 1.5) upon admission to the ED. Compared to the logistic regression model, the model based on the random forest algorithm showed better accuracy (94.0%, 95% confidence interval [CI]: 0.922-0.954 to 93.5%, 95% CI: 0.916-0.95), precision (93.3%, 95% CI: 0.914-0.948 to 93.1%, 95% CI: 0.912-0.946), F1 score (93.4%, 95% CI: 0.915-0.949 to 92%, 95% CI: 0.9-0.937), and recall score (94.0%, 95% CI: 0.922-0.954 to 93.5%, 95% CI: 0.916-0.95) but yielded lower area under the receiver operating characteristic curve (AU-ROC) (0.810, 95% CI: 0.673-0.918 to 0.849, 95% CI: 0.732-0.944) for predicting ATC in the trauma patients. The result is similar in the validation cohort. The values for classification accuracy, precision, F1 score, and recall score of random forest model were 0.916, 0.907, 0.901, and 0.917, while the AU-ROC was 0.830. The values for classification accuracy, precision, F1 score, and recall score of logistic regression model were 0.905, 0.887, 0.883, and 0.905, while the AU-ROC was 0.858. We developed and validated a prediction model based on objective and rapidly accessible clinical data that very confidently identify trauma patients at risk for ATC upon their arrival to the ED. Beyond highlighting the value of ED initial laboratory tests and vital signs when used in combination with data analysis and modeling, our study illustrates a practical method that should greatly facilitates both warning and guided target intervention for ATC.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Hematology,General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3