Temporal Profile of Kynurenine Pathway Metabolites in a Rodent Model of Autosomal Recessive Polycystic Kidney Disease

Author:

Pires Ananda Staats12,Gupta Shabarni3,Barton Sean A3,Vander Wall Roshana3,Tan Vanessa1,Heng Benjamin1,Phillips Jacqueline K3,Guillemin Gilles J1

Affiliation:

1. Neuroinflammation Group, Macquarie Medical School, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia

2. Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brasil

3. Autonomic and Sensory Neuroscience Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is an early onset genetic disorder characterized by numerous renal cysts resulting in end stage renal disease. Our study aimed to determine if metabolic reprogramming and tryptophan (Trp) metabolism via the kynurenine pathway (KP) is a critical dysregulated pathway in PKD. Using the Lewis polycystic kidney (LPK) rat model of PKD and Lewis controls, we profiled temporal trends for KP metabolites in plasma, urine, and kidney tissues from 6- and 12-week-old mixed sex animals using liquid and gas chromatography, minimum n = 5 per cohort. A greater kynurenine (KYN) concentration was observed in LPK kidney and plasma of 12-week rats compared to age matched Lewis controls ( P ⩽ .05). LPK kidneys also showed an age effect ( P ⩽ .05) with KYN being greater in 12-week versus 6-week LPK. The metabolites xanthurenic acid (XA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HAA) were significantly greater in the plasma of 12-week LPK rats compared to age matched Lewis controls ( P ⩽ .05). Plasma XA and 3-HK also showed an age effect ( P ⩽ .05) being greater in 12-week versus 6-week LPK. We further describe a decrease in Trp levels in LPK plasma and kidney (strain effect P ⩽ .05). There were no differences in KP metabolites in urine between cohorts. Using the ratio of product and substrates in the KP, a significant age-strain effect ( P ⩽ .05) was observed in the activity of the KYN/Trp ratio (tryptophan-2,3-dioxygenase [TDO] or indoleamine-2,3-dioxygenase [IDO] activity), kynurenine 3-monooxygenase (KMO), KAT A (kynurenine aminotransferase A), KAT B, total KAT, total KYNU (kynureninase), KYNU A, KYNU B, and total KYNU within LPK kidneys, supporting an activated KP. Confirmation of the activation of these enzymes will require verification through orthogonal techniques. In conclusion, we have demonstrated an up-regulation of the KP in alignment with progression of renal impairment in the LPK rat model, suggesting that KP activation may be a critical contributor to the pathobiology of PKD.

Funder

PKD Foundation Australia

National Health and Medical Research Council

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Hillcrest Foundation

Publisher

SAGE Publications

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3