Identification and Characterization of a Novel Dual Inhibitor of Indoleamine 2,3-dioxygenase 1 and Tryptophan 2,3-dioxygenase

Author:

Yoshioka Saeko1,Ikeda Tomonori1,Fukuchi Sogo1,Kawai Yurika1,Ohta Katsumi1,Murakami Hisashi1,Ogo Naohisa1,Muraoka Daisuke2,Takikawa Osamu3,Asai Akira1

Affiliation:

1. Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan

2. Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

3. National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan

Abstract

Kynurenine (Kyn), a metabolite of tryptophan (Trp), is a key regulator of mammal immune responses such as cancer immune tolerance. Indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are main enzymes regulating the first and rate-limiting step of the Kyn pathway. To identify new small molecule inhibitors of TDO, we selected A172 glioblastoma cell line constitutively expressed TDO. Characterization of this cell line using kinase inhibitor library resulted in identification of MEK/ERK pathway-dependent TDO expression. After knowing the properties for TDO expression, we further proceeded to screen chemical library for TDO inhibitors. We previously determined that S-benzylisothiourea derivatives are enzymatic inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and suggested that the isothiourea moiety could be an important pharmacophore for binding to heme. Based on this premise, we screened an in-house library composed of various isothiourea derivatives and identified a bisisothiourea derivative, PVZB3001, as an inhibitor of TDO. Interestingly, PVZB3001 also inhibited the enzymatic activity of IDO1 in both cell-based and cell-free assays but did not inhibit other heme enzymes. Molecular docking studies suggested the importance of isothiourea moieties at the ortho position of the phenyl ring for the inhibition of catalytic activity. PVZB3001 showed competitive inhibition against TDO, and this was supported by the docking simulation. PVZB3001 recovered natural killer (NK) cell viability and functions by inhibiting Kyn accumulation in conditioned medium of both IDO1- and TDO-expressing cells. Furthermore, oral administration of IDO1-overexpressing tumor-bearing mice with PVZB3001 significantly inhibited tumor growth. Thus, we identified a novel selective dual inhibitor of IDO1 and TDO using the Kyn production assay with a glioblastoma cell line. This inhibitor could be a useful pharmacological tool for modulating the Kyn pathway in a variety of experimental systems.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3