Affiliation:
1. Cedars-Sinai Medical Center, Los Angeles, CA
2. University of Wisconsin-Madison, Madison, WI
3. Embry-Riddle Aeronautical University, Daytona Beach, FL
Abstract
The Human Factors Analysis and Classification System for Healthcare (HFACS-Healthcare) was used to classify surgical near miss events reported via a hospital’s event reporting system over the course of 1 year. Two trained analysts identified causal factors within each event narrative and subsequently categorized the events using HFACS-Healthcare. Of 910 original events, 592 could be analyzed further using HFACS-Healthcare, resulting in the identification of 726 causal factors. Most issues (n = 436, 60.00%) involved preconditions for unsafe acts, followed by unsafe acts (n = 257, 35.39%), organizational influences (n = 27, 3.72%), and supervisory factors (n = 6, 0.82%). These findings go beyond the traditional methods of trending incident data that typically focus on documenting the frequency of their occurrence. Analyzing near misses based on their underlying contributing human factors affords a greater opportunity to develop process improvements to reduce reoccurrence and better provide patient safety approaches.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献