Accuracy of a computer vision system for estimating biomechanical measures of body function in axial spondyloarthropathy patients and healthy subjects

Author:

Cronin Neil J12,Mansoubi Maedeh34ORCID,Hannink Erin5ORCID,Waller Benjamin67,Dawes Helen358

Affiliation:

1. Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland

2. School of Sport and Exercise, University of Gloucestershire, Gloucester, UK

3. Intersect@Exeter, Medical School, University of Exeter, Exeter, UK

4. Biomedical Research Center, Medical School, Faculty of Health and Life sciences, University of Exeter, Exeter, UK

5. Centre for Movement, Occupational and Rehabilitation Science (MOReS), Oxford Brookes University, Oxford, UK

6. Physical Activity, Physical Education, Sport and Health Research Centre (PAPESH), Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland

7. Good Boost Wellbeing limited, London, UK

8. Oxford Health, Biomedical Research Centre, University of Oxford, Oxford, UK

Abstract

Objective Advances in computer vision make it possible to combine low-cost cameras with algorithms, enabling biomechanical measures of body function and rehabilitation programs to be performed anywhere. We evaluated a computer vision system's accuracy and concurrent validity for estimating clinically relevant biomechanical measures. Design Cross-sectional study. Setting Laboratory. Participants Thirty-one healthy participants and 31 patients with axial spondyloarthropathy. Intervention A series of clinical functional tests (including the gold standard Bath Ankylosing Spondylitis Metrology Index tests). Each test was performed twice: the first performance was recorded with a camera, and a computer vision algorithm was used to estimate variables. During the second performance, a clinician measured the same variables manually. Main measures Joint angles and inter-limb distances. Clinician measures were compared with computer vision estimates. Results For all tests, clinician and computer vision estimates were correlated ( r2 values: 0.360–0.768). There were no significant mean differences between methods for shoulder flexion (left: 2 ± 14° (mean ± standard deviation), t = 0.99, p < 0.33; right: 3 ± 15°, t = 1.57, p < 0.12), side flexion (left: − 0.5 ± 3.1 cm, t = −1.34, p = 0.19; right: 0.5 ± 3.4 cm, t = 1.05, p = 0.30) and lumbar flexion ( − 1.1 ± 8.2 cm, t = −1.05, p = 0.30). For all other movements, significant differences were observed, but could be corrected using a systematic offset. Conclusion We present a computer vision approach that estimates distances and angles from clinical movements recorded with a phone or webcam. In the future, this approach could be used to monitor functional capacity and support physical therapy management remotely.

Funder

National Institute for Health and Care Research Exeter Biomedical Research Centre

Innovate UK

Publisher

SAGE Publications

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3