The Effect of Ventilation Rate and Filter Performance on Indoor Particle Concentration and Fan Power Consumption in a Residential Housing Unit

Author:

Noh Kwang-Chul1,Hwang Jungho2

Affiliation:

1. School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea

2. School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea,

Abstract

This paper reports a study of the effect of ventilation rate and filters performance on indoor particle concentration and fan power consumption in a residential housing unit with a mechanical ventilation system. Through an adapted mass-balance model, indoor particle concentrations were calculated for various ventilation rates, filter performances and room sizes. Additionally, the influence of air-exchange effectiveness and cross-contamination around the exterior air vent on the indoor particle concentration was considered. Recirculation of indoor air was not considered. From the results, filters for which the performance was lower than MERV07 were found to be insufficient for reducing indoor particle concentrations below the levels obtained under no ventilation. A higher ventilation rate was needed for the given amount of indoor particle sources for a smaller size residential housing unit in comparison to the larger units. The minimum ventilation rate was less sensitive to variations in the air-exchange effectiveness inside the residential housing unit and the cross-contamination index around the exterior air vents. To satisfy the ventilation requirement for gaseous pollutants and keep the particle concentrations below those under no ventilation, a filter with a performance that would exceed MERV11 should be used when the size of the residential housing unit is in the range of 150—300 m3.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3