Lateral ventilation performance for removal of pulsating buoyant jet under the influence of high-temperature plume

Author:

Wang Yi12,Cao Lei2,Huang Yanqiu12,Cao Yingxue2

Affiliation:

1. State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, PR China

2. School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China

Abstract

Lateral exhaust systems have commonly been applied to capture polluted buoyant jets in many industrial processes, such as casting and metallurgy. Compared with the normal conditions of design manuals, the capture efficiency of a lateral exhaust hood (LEH) is often weakened by two factors in actual processes: the unsteady buoyant jet released from the operating surface, and the plume formed above a high-temperature workpiece placed between the LEH and the operating surface. In this study, through experiments and numerical simulations, a pulsatile phenomenon was found in the velocity and concentration distribution of the unsteady buoyant jet. Results show that the contaminate escape ratio is pulsatile; it rises with the instantaneous increase in the buoyant jet velocity and gradually decreases to a constant value. This study not only reveals the air distribution of pulsating buoyant jet but also analyses the effect of the pulsating buoyant jet and high-temperature plume on lateral ventilation system capture efficiency and provides a possible guidance for future design of new building ventilation technologies.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

National Science Fund for Distinguished Young Scholars of China

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3