Experimental study of thermo-fluid boundary conditions, airflow and temperature distributions in a single aisle aircraft cabin mockup

Author:

Wang Congcong1ORCID,Zhang Jie2,Chen Hongbing1,Liu Junjie3ORCID

Affiliation:

1. School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China

2. Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA

3. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China

Abstract

Aircraft cabin mockup has been accepted as a benchmark tool to study the aircraft cabin environment. Some researchers used computational fluid dynamics to predict the cabin environment, but the model always needs to be validated by accurate and comprehensive experimental data obtained from the cabin mockup. This study measured thermo-fluid boundary conditions, airflow and temperature distributions by appropriate instruments in a full-scale seven-row aircraft cabin mockup. We used an improved interpolation method to obtain the airflow and temperature distributions. For airflow fields, the interpolation regions were determined based on the sampling location. For the temperature field, in addition to sampling locations, cabin wall temperatures were also needed to be set as interpolation boundary. Non-uniformity coefficient was applied to evaluate homogeneities of air supply velocities and zonal wall temperatures. The measurement error and uncertainty were quantified in detail to evaluate measurement accuracy. We found that the uncertainty of the air supply velocity measured by hot-sphere anemometers was lower than that of airflow field velocity measured by ultrasonic anemometers.

Funder

National Natural Science Foundation of China

General Project of Science and Technology Plan of Beijing Municipal Education Commission

National Key Research and Development Program

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3