Numerical investigation of micron particle inhalation by standing thermal manikins in horizontal airflows

Author:

Li Xiangdong1,Inthavong Kiao1,Tu Jiyuan12

Affiliation:

1. School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, Australia

2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China

Abstract

Computational fluid dynamics computations were conducted to investigate the particle inhalation characteristics of a thermal manikin standing in a horizontal airflow with different orientations, leg postures, wind speeds and particle sizes. The computations revealed that only when the manikin’s thermal plume moves into the breathing zone (namely, the manikin is facing the lee side) could the body heat affect the characteristics of particle inhalation. Further computations demonstrated that, when facing the lee side, the manikin’s particle inhalation is highly sensitive to its leg posture. When the legs are separated, air can flow through the gap, causing more particle entrainment into the breathing zone from the lower level. Although the thermal effect of body heat is gradually suppressed with increasing wind speed or particle size, different leg postures have different environmental sensitivities.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3