On-site measurement of winter indoor environment and air infiltration in an airport terminal

Author:

Liu Xiaochen1,Liu Xiaohua1,Zhang Tao1ORCID,Guan Bowen1

Affiliation:

1. Department of Building Science, Tsinghua University, Beijing, China

Abstract

Currently, many airports in China are being built or retrofitted. Reducing energy consumption in airport terminals is of the utmost urgency. This paper describes on-site measurements of indoor thermal environment and air infiltration of a hub airport in winter in southwest China. Air velocity measurements with air volume balance check and thermal balance check were applied to assess air infiltration rates in terminal buildings. In unsecured halls, air infiltration rates were 0.61 air change per hour (ACH) (6.6 m3/(h m2)) and 0.28 ACH (3.0 m3/(h m2)) when space heating was on and off, respectively; while in secured piers, those two air infiltration rates were 0.42 ACH (2.6 m3/(h m2)) and 0.24 ACH (1.5 m3/(h m2)). Air infiltration consumed 66–92% of heat supplied by space heating systems, showing that winter air infiltration significantly affects indoor thermal environment and energy consumption in terminal buildings where air flows out through the doors of service walkways and open skylights on the roof. Furthermore, influences of building characteristics, space heating systems and outdoor temperatures on winter air infiltration in large space buildings were analysed. This research helps to clarify the key issues influencing indoor thermal environment and proposes solutions for energy saving in terminal buildings.

Funder

National Natural Science Foundation of China

National Key Research Program of China

Shaanxi Key Scientific and Technological Innovation Team

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3