Pathways for optimal provision of thermal comfort and sustainability of residential housing in hot and humid tropics of Australia – A critical review

Author:

Safarova Shokhida1,Halawa Edward1,Campbell Andrew2,Law Lisa3,van Hoof Joost4

Affiliation:

1. Centre for Renewable Energy, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia

2. Australian Centre for International Agricultural Research, Canberra, Australia

3. Environment, Geography & Sustainability Group, College of Marine & Environmental Sciences, James Cook University, Queensland, Australia

4. Fontys University of Applied Sciences, Eindhoven, The Netherlands

Abstract

The optimal provision of thermal comfort and energy efficiency for residential housing in the hot and humid tropics presents challenges and opportunities for housing and subdivision designs. Climatic challenges come in the form of high ambient temperature and humidity, especially during the wet season and transition periods. On the other hand, climatic advantages come in the form of breezes coupled with relatively dry air during the dry season, enabling thermal comfort attainment through natural ventilation that employs prevailing breezes. This paper discusses existing design practices for housing and subdivisions in the hot and humid tropics with particular reference to the city of Darwin in Australia’s Northern Territory. This includes several research issues and gaps that have been identified and need to be addressed. The paper also critically assesses how air speed, air temperature and humidity – three of the thermal comfort parameters – play a key role in housing and subdivision design consideration in the hot and humid tropics. In doing so, the paper sheds light on the inadequacy of the current residential energy rating methodology as a tool for assessing tropical housing performance and proposes a new direction for future research to ameliorate these issues for the tropics.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3