Development of a Computer Programme for the Prediction and Control of Mould Growth in Buildings Using the ESP-r Modelling System

Author:

Rowan N.J.1,Anderson J.G.1,Smith J.E.1,Clarke J.A.2,McLean R.C.2,Kelly N.J.2,Johnstone C.M.2

Affiliation:

1. Department of Bioscience & Biotechnology

2. Energy Systems Division, Department of Mechanical Engineering, Strathclyde University, Glasgow, UK

Abstract

Based on an analysis of the best published data, critical limits for the growth of six commonly occurring indoor moulds (defined in terms of relative humidity and temperature) have been formulated into a mould prediction computer programme. The fungi were selected as representative of moulds which differ in their relative humidity and temperature requirements to sustain surface growth, and because several were known mycotoxin producing species and of potential health significance. Each growth limit curve was generated from a series of data points on a temperature-relative humidity (RH) plot and fitted using the third-order polynomial equation RH = a3T3 + a2T2 + a1T + ao. The model was incorporated within the Environmental Systems Performance research programme for transient simulation of the energy and environmental performance of buildings, thereby enabling the system to predict the likely occurrence of mould development for fungi which exhibit similar tempera ture/RH requirements to the reference moulds. The model predicts the inter active parameters which give rise to local environmental conditions that encourage mould growth. The system's predictive capability was tested via laboratory experiments and by comparison with monitored data from a moul dy building.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3