Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community

Author:

Xiaolei Gao 1,Yuguo Li 2,Leung Gabriel M.3

Affiliation:

1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China

2. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China,

3. Department of Community Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China

Abstract

Following the recent severe acute respiratory syndrome epidemics and worldwide concern about the next pandemic, whether influenza or multiple drug resistant tuberculosis, has underlined the importance of effective interventions into airborne disease transmission in indoor environments in a community. The engineering control measures available include ventilation dilution, use of high-efficiency particulate air filters in a room or in the heating, ventilation, and air-conditioning (HVAC) system, and use of ultraviolet germicidal irradiation devices in ceiling area of a room or in the HVAC system. These methods are known to be effective in controlling or delaying airborne disease transmission in a single enclosure in both healthcare facilities and the community. However, there have been no studies of their relative effectiveness at the community level. This paper presents mathematical modeling of some engineering control strategies with a focus on ventilation and corresponding analysis of their relative effectiveness compared with other public health interventions in disease control in indoor environments at the community level. The results should help us to determine the most effective intervention strategies. We conclude that the engineering intervention methods such as building ventilation can be as effective as public health interventions and the ventilation rates specified in the existing standards such as ASHRAE 62 may be too low for the purpose of preventing or controlling airborne infectious diseases in indoor environments.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3