Representing the photobiological dimension of light in northern architecture

Author:

Lalande Philippe1,Hébert Marc2,Potvin André1,Lalonde Jean-François3,Watchman Mélanie1ORCID,Demers Claude MH1

Affiliation:

1. Research Group in Physical Ambiences (GRAP), Laval University School of Architecture, Quebec, QC, Canada

2. CERVO Brain Research Centre, Laval University, Quebec, QC, Canada

3. Computer Vision and Systems Laboratory, Laval University, Quebec, QC, Canada

Abstract

Daylight can enhance the quality and inhabitability of architecture through a better relationship with the exterior environment, especially by its intensity, chromaticity and ability to synchronize the human circadian clock. Daylight integration in architecture remains a challenge in Nunavik (Quebec, Canada) due to its subarctic climate, photoperiod and solar geometry. The objective of this research is to implement photobiological metrics of light in architectural representations by isolating the photopic (daytime vision) and melanopic (circadian clock) portions of the electromagnetic spectrum, and to spatialize daylight and artificial light in relation to landscapes and indoor architectural spaces. An automated and low-cost capture tool based on Raspberry Pi microcomputers and Camera Modules (RPiCM) captures high dynamic range images, which accurately measure luminance to render human perception. Absolute photopic luminance maps (cd/m2) are supplemented with false colour displays of photopic/melanopic contents of light regarding building surface materials. The research develops photometric captures of absolute photopic and melanopic illuminance (lux, EML). Photobiological metrics of light are integrated into a set of physical properties of lighting patterns to perform light assessments and are ultimately represented as a graphical display to help designers and researchers to evaluate architectural interior–exterior relationships through daylight qualities.

Funder

Canada First Research Excellence Fund

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3