Measuring a Breathing Wall's effectiveness and dynamic behaviour

Author:

Alongi Andrea1ORCID,Angelotti Adriana1ORCID,Mazzarella Livio1

Affiliation:

1. Department of Energy, Politecnico di Milano, Milano, Italy

Abstract

Breathing Walls are building structures based on porous materials crossed by an airflow, which act both as building envelopes and ventilation system components. In climates where both heating and cooling are needed, a pro-flux configuration (heat and air mass both flowing in the same direction) might be alternated with a contra-flux configuration (heat and air mass flowing in opposite directions) during the year or even on a day. Understanding and modelling the Breathing Walls' stationary and dynamic behaviour is thus fundamental, in order to optimize their design and to fully exploit their energy-saving potential. In this experimental study, a small-scale no-fines concrete Breathing Wall was investigated. The steady-state contra-flux tests performed in a Dual Air-Vented Thermal Box laboratory apparatus were used to derive the heat recovery efficiency of the sample as a function of the cross airflow velocity. The effectiveness of this technology was then evaluated in a virtual case study. An optimal airflow velocity across the Breathing Wall was found, leading to energy savings between 9% and 14%. Dynamic tests were performed assuming a sinusoidal variation of the operative temperature on one side of the sample. They showed how airflow velocity affected the Breathing Wall inertia and dynamic behaviour.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3