Studying occupant’s heat exposure and thermal comfort in the kitchen through full-scale experiments and CFD simulations

Author:

Luo Maohui1,Guo Junjie23,Feng Xiwen1,Chen Wenhua4ORCID

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai, China

2. Fotile Company, Ningbo, China

3. Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, China

4. School of Infrastructure Engineering, Nanchang University, Nanchang, China

Abstract

This study investigated kitchen heat exposure and thermal comfort through full-scale experiments and computational fluid dynamics (CFD) simulations. Experiments were conducted in a kitchen-style climate chamber with three stove conditions, three exhaust flowrates of range hood, three external conditions and three makeup air sources. CFD simulations were conducted accordingly to explore more nuances aspects of kitchen thermal environment. The experimental results showed that as the existence of a high-temperature stove, the air temperatures around the cooking staff, the net thermal radiations and local skin temperatures at exposed body parts increased significantly during the cooking period. External conditions and the makeup air source can significantly affect thermal distributions across the kitchen space and the heat exposures around the cooking staff. By adding partitions, using induction cooktops, and turning on the kitchen air conditioner can help to reduce cooking staff’s heat exposure from the gas-burning stove. The CFD simulations were consistent with the measured experimental results. The heat exposure in the cooking zone is shown to be dominated by horizontal thermal asymmetry. The occupants’ thermal comfort in the kitchen can be improved if the makeup air source came from the cooler side with a higher flowrate of range hood.

Funder

National Natural Science Foundation of China

Beijing Key Laboratory of Indoor Air Quality Evaluation and Control

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3